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A simple model is developed to character-
ize the behavior of radio-frequency ab-
sorbers at low frequency. The absorber is
represented by a flat, homogeneous,
isotropic slab of lossy material, with effec-
tive constitutive parameters. These parame-
ters are determined by a fit to measured
data. Excellent fits are obtained in the two
applications considered. The model is in-
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shielded enclosures.
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1. Introduction

This paper presents a simple model for a wall of
(electromagnetic) absorber at low frequency. The moti-
vation for developing the model was the need for a
simple representation of absorbing walls which will
serve as the basis of a model for characterizing anechoic
chambers (ACs) at low frequency. The low-frequency
performance of ACs constitutes a serious problem in
their use as electromagnetic interference (EMI) test
facilities. At high frequency an AC provides a well con-
trolled, isolated, reflectionless environment, but at low
frequency the absorber is less efficient, and the walls
become (partially) reflective. Depending upon chamber
size and absorber size and composition, the deteriora-
tion in the performance of a chamber typically occurs
between 50 MHz and 500 MHz. Consequently, the fre-
quency range of interest for EMI tests usually extends
below the frequency range of good performance for an
AC. Nevertheless, ACs are often used for EMI tests at
low frequencies because of the lack of good alterna-
tives—particularly for indoor testing of large systems. It
is therefore very important that their behavior at low
frequency (below about 500 MHz) be characterized and
understood. Such a characterization is also needed for
planning purposes. Construction of an AC represents a
sizable investment; in order to make informed decisions

about such a purchase one must know in advance with
what accuracy the relevant tests could be performed in
an AC of a given size and construction.

The way this problem has typically been approached
is to take either measured or calculated values of the
reflection coefficient of the absorber and use a geomet-
ric optics approximation to calculate the fields resulting
from a given source [1–4]. (A finite-difference time-
domain analysis of a transmission line chamber was
done in [5], for a flat, layered absorber wall.) A modal
representation of the fields in the chamber would be
more natural than geometric optics for low frequency,
but the geometric complexity of the absorbing walls
would seem to preclude such an approach. In order to
make the mode calculations tractable, we need a simple
representation of the behavior of the absorbing walls.
That would enable us to solve for the cavity modes and
derive an expansion for the fields within the chamber.
With the modal expansion we could calculate the fields
within the chamber for a given source distribution,
compute the difference from the idealized fields
assumed in the test of interest, and thereby determine
the expected uncertainty in the test as a function of
frequency for that chamber.
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This paper presents such a model for the characteriza-
tion of the absorbing walls. The model isnot intended
(and is not suitable) as a tool for absorber design. Mod-
els and calculations for absorber design already exist
[6–10]. Their approach is to calculate the behavior of
absorbing structures from the geometry and the consti-
tutive parameters of the material. We adopt a different
approach, which is better suited to our purpose. We do
not attempt to predict absorber behavior, but rather to
reproduce measured absorber behavior in a model
which can be used in subsequent calculations. Instead of
starting from measured (or assumed) values ofe , m ,
etc., and calculating the properties of the absorber, we
start with the measured reflection coefficient of the
absorber and adjust the model parameters to agree with
the data. In this way we ensure good agreement with the
measured (macroscopic) properties of the absorbing
wall, and at the same time the model is considerably
simpler to use in further calculations than the more
sophisticated treatments of [6–10]. We are, however,
still reliant on our model to extrapolate from measured
reflection coefficient to unmeasured aspects of the ab-
sorber’s behavior. Of course, we are also reliant on the
quality of the data (and the uncertainty estimates) used
in the fits. If the data are wrong, the fitting procedure
merely produces a good representation of bad results.
This is an important point since measurement of the
absorber’s reflection coefficient at low frequency is not
a trivial task. The data used in the examples below were
taken using a time-domain technique [11, 12], which
produces data down to about 20 MHz, but which does
not actually measure the true reflection coefficient. For
the purpose of demonstrating the application of the
model, we assume that the data are results for the reflec-
tion coefficient and that any departures from this are
included in the uncertainties.

The specific model we use to represent the wall of
absorber at low frequency consists of a flat slab of
uniform, isotropic, lossy material, backed by a perfect
conductor. The approximation of using aflat surface is
motivated by the fact that structure much smaller than a
wavelength cannot be resolved by the incident wave. The
relative permittivity, conductivity, and thickness of the
slab are left as free parameters, to be determined by a fit
to reflection coefficient data. In this paper we take the
effective permeability of the absorber to be that of free
space,m = m 0. As will be evident below, the model
could also be applied to ferrite tiles, in which case the
permeability would be treated as an additional free
parameter. The parameters of the model are not the
actual physical permittivity, conductivity, and thickness
of the foam absorber. Instead they are effective parame-
ters of the flat slab, which include the effect of the size
and shape of the absorbing cones. Nevertheless, we ex-

pect the effective parameters to be physically
“reasonable”; if they are wildly different from the actual
physical values, the model is suspect. If a good fit to all
relevant data can be obtained with physically reasonable
values of the parameters, then we have a simple repre-
sentation for the absorbing wall at low frequency, which
can be used in constructing a model of an AC, a semi-
anechoic chamber, or a partially loaded shielded enclo-
sure.

The remainder of this paper will give details of the
model and demonstrate that it can successfully represent
measured data. The next section derives the reflection
coefficients for our model absorbing wall and describes
the fitting procedure. Sections 3 and 4 contain applica-
tions to reflection coefficient data from two different
absorbers. In Sec. 5 we summarize the results and
present conclusions.

2. Calculation

2.1. Reflection Coefficients

The low-frequency approximation underlying the
model is pictured in Fig. 1. Since we will be working
almost exclusively with the effective parameters, we
drop the subscripts on them:«eff, seff, meff, deff → e , s ,
m , d. Although the applications in this paper will be for
nonmagnetic materials, we will not imposem = m0 until
after we have obtained the general result for the reflec-
tion coefficients. Thus our expressions are valid for gen-
eral (complex)m , and therefore they are applicable to
ferrite tiles or composite absorbers, as well as to tradi-
tional foam absorbers.

Fig. 1. Approximation of replacing absorbing cones with conduct-
ing back plane by a lossy slab with a conducting back plane.
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The calculation of the reflection coefficients is a
straightforward exercise in boundary matching, with a
little complication added by the presence of loss. We
assume a monochromatic plane wave (angular fre-
quencyv ) incident on the absorber at an angleu to the
normal. Figure 2 establishes notation and geometric
conventions. We have shown the TE case, withE out of
the page. The incident and reflected fields in the air are

Ei = Eiŷe–jb0(xsinu + zcosu),

H i =
1
h0

Ei (–x̂cosu + ẑsinu ) e–jb0 (xsinu + zcosu),

Er = Er ŷe–jb0 (xsinu – zcosu),

Hr =
1
h0

Er (x̂cosu + ẑsinu ) e–jb0(xsinu – zcosu),

h0 = Îm0

«0
, b0 = v Ï«0m0 (1)

Fig. 2. Plane wave incident on lossy slab.

where ejvt time dependence is assumed. Inside the mate-
rial, the transmitted fields propagating to the right can
be written as [13]

Et = ŷEt e–az e–jb(xsinz + zcosz),

H t =
j

mv
Et [x̂ (a + j b cosz ) – ẑjbsinz ]

3 e–az e–j (xsinz + zcosz ), (2)

where

a = Fvms
2 SÎ1 + (

v«
s

cos2u )2 –
v«
s

cos2uDG1/2

,

b = Ïv2«m + a2 ,

sinz =
b0

b
sinu ,

gz = a + jb cosz . (3)

For the waves travelling to the left in the material, we
have

Et' = ŷEt' e–a(d–z) e–jb[xsinz + (d–z) cosz] ,

H t' =
j

mv
Et' [–x̂ (a + jb cosz ) – ẑj bsinz ]

3 e–a(d–z) e–j b [xsinz + (d–z) cosz]. (4)

Setting the tangential component ofE equal to 0 at
the conductor surface (z = d) and requiring tangentialE
and H to be continuous at the air-material interface
yields three equations which can be solved forEr in
terms ofEi. That yields the reflection coefficient for TE
polarization,

RTE ≡ Er

Ei
=

mvcosu + jh0gzcoth(gzd)
mvcosu – jh0gzcoth(gzd)

. (5)

A similar exercise for TM polarization of the incident
wave (H out of the page) results in

RTM ≡ Hr

Hi
=

(s + jv«) h0cosu – gztanh (gzd)
(s + jv« ) h0cosu + gztanh (gzd)

. (6)
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Equations (3), (5), and (6) determine the reflection from
our absorber model in terms of the parameters«, m , s ,
andd. The next subsection describes the fitting proce-
dure used to determine these parameters.

Before discussing the fitting procedure, one more
aspect of the model should be addressed: that is the
location of the model slab relative to the actual absorber.
Because the thickness of the slab is not the same as that
of the absorber (deff Þ d2 in Fig. 1) there is an ambiguity
about whether the front of the slab should coincide with
the tips of the cones or whether the conducting back
planes of the slab and the cones should coincide—or
neither. Resolution of this question would require phase
measurements of the reflection coefficients of Eqs. (5)
and (6), which are not available at this time. A related
question is whether the conducting plane in the model
plays the same role as it does in the real case, or whether
it also incorporates some of the behavior of the ab-
sorber. In particular, for some absorbers the reflections
might occur primarily from the planes corresponding to
the tips of the cones and to the bases of the cones, with
very little energy actually penetrating all the way to the
conducting wall. In that case, the conducting wall in our
model would perform the function of the transition from
cones to continuous backing material. The practical im-
plication of this point is that our model cannot necessar-
ily be blindly extended to the case of absorbing cones
without a back plane simply by removing the conduct-
ing plane from behind the slab in the model.

2.2 Fitting Procedure

The free parameters in Eqs. (3), (5), and (6) are to be
determined by fits to experimental data. To perform the
fits we used an orthogonal distance regression (ODR)
package developed by the NIST Computing and Applied
Mathematics Laboratory [14]. As applied in this paper,
the ODR procedure is a simple generalization of the
ordinary least squares (OLS) fitting procedure. In an
OLS fit the residuals are defined as the differences
between the fitting function and the measurements at the
same frequency, and one minimizes the weighted sum of
the residuals squared, which we denotex2

OLS,

x2
OLS = S

i
[yi – y (fi ; b )] 2 wi ,

wi =
1

s2
i

, (7)

whereyi are the measurement results,fi are the measure-
ment frequencies,y(f , b ) is the fitting function,b rep-
resents the free parameters, and the weightswi are typi-
cally taken to be the inverses of the squared standard
deviations of the measurements. The ODR procedure
defines the residuals as the orthogonal distances be-

tween measurement points and fitting curve, thereby
allowing for some uncertainty in the measurement fre-
quency. The function to be minimized is

x2
ODR = S

i
(wyi [yi–y(fi + di ; b )] 2 + wfi d2

i ),

wyi =
1

s2
yi

, wfi =
1

s2
fi

, (8)

where syi and sf i are the standard deviations in the
measurements ofy andf . The data in this paper were all
obtained from FFTs of time domain measurements
[11, 12], and thus each point represents an average over
a significant frequency range (20 MHz) rather than a
measurement at one frequency with negligible band-
width. Consequently an ODR fit is more appropriate for
our purposes than OLS. There is not much difference
between the two in the examples below, but we will
present ODR results unless we indicate otherwise. If the
weightswi are taken to be the inverses of the squared
standard deviations (of the means) in Eqs. (7) and (8),
then the quantityx2 provides a measure of how good the
fit is. A correct theory will usually result inx2/n # 1,
wheren is the number of degrees of freedom, defined as
the number of measurement points minus the number of
fitting parameters. (Those unfamiliar with fitting proce-
dures and significance are referred to references such as
[15, 16].)

An important consideration in performing the fits and
especially in judging their agreement with the data is the
uncertainty (si , syi , sfi ) ascribed to the measurement
results and used in Eqs. (7) and (8). The uncertainty in
the frequency is simple enough. We take the distance
from midpoint to edge of the frequency bin to be 2sf ,
and thussfi = 5 MHz for all i . Each of the reflection
coefficient measurements below was performed three
times, and we can therefore approximate the random or
type-A [17] uncertainty by the standard deviation of the
mean, which we callsA. In addition, there is a system-
atic (type-B) uncertainty associated with the method
and the instrumentation. These are not very well deter-
mined at this time. For this paper, we take them to be
about 20 % of the measured reflection coefficient (about
1.6 dB to 2 dB). The full standard deviation in the
measurement of the reflection coefficient is then given
by [17]

s2
i = s 2

Ai + s 2
Bi ,

sBi = 0.2 RTE (fi )  , (9)

at each frequencyfi . This is roughly consistent with the
uncertainty estimated for the measurement method
in [11, 12]. As will be seen, the additional 20 %
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uncertainty is not needed to obtain good fits in our
examples. We will provide information onx2 under both
assumptions:sA only and the full si of Eq. (9). In
discussing the quality of the fits we will also present
figures comparing fit to measurements. In the figures
the error bars will correspond only to the statistical
standard deviation of the mean of the measurements,sA,
determined from the spread in the three measurement
results at that frequency. As will be seen, the agreement
in the figures will also be very good.

Two of our effective parameters,« and s , are fre-
quency dependent. In general, the real and imaginary
parts ofm are also frequency dependent, but since our
applications are nonmagneticm = m0. The effective per-
mittivity and conductivity are parameterized as

« (f )
«0

= 1 «̂100 S f
f0
Da«

,

s (f ) = s100 S f
f0
Das

, (10)

wheref0 = 100 MHz. Thus (1 +«̂100) ands100 are the
values at 100 MHz, anda« andas control the frequency
dependence. This functional form was chosen for sim-
plicity and convenience; it does not have a physical
justification. Indeed, since the frequency dependence of
these effective parameters must in some way include the
frequency dependent effects of the absorber cones, a
physical derivation of the frequency dependence would
be quite complicated. In principle, the effective thick-
ness could also have a frequency dependence, but it is
not required in our applications, and so we do not in-
clude it. We thus have five parameters to vary in our fits:
«̂100, a« , s100, as , andd. Given a set of measurement
results we vary these five parameters (within physically
reasonable values) to minimizex2. If the minimumx2

corresponds tox2/n < 1, then our model agrees with the
measured results as well as a full, correct calculation
could be expected to agree. Stated another way, the
measurements do not distinguish between our model
and the full, correct theory. This general procedure is
demonstrated (and refined) in the applications in the
next two sections.

3. Small-Absorber Application

The first application we consider is to data [18] taken
on a small (29.2 cm thick), pyramidal, polyurethane
foam absorber, depicted in Fig. 3. The sample used in
the measurements was a 2.44 m (8 ft) square. The mea-
surements were made at normal incidence, using the
time-domain technique described in [11]. The conver-
sion to the frequency domain introduces a frequency bin

size of 20 MHz. Three separate measurements were
made, using three different combinations of distances
for the transmitting and receiving antennas. From the
three measurements we computed an average and stan-
dard deviation (using the amplitudes, then converting
the results to decibels) at each frequency. The results are
shown in Fig. 4. The effective parameters for this ab-
sorber are determined by fitting the magnitude of the
reflection coefficient, determined from Eq. (5), to the
data. All fits and statistics were done on the amplitude
RTE, but the results will be presented in decibels. The
full si ’s of Eq. (9) were used in this fit.

Fig. 3. Small absorber used in first application of model.

There are two aspects of the data of Fig. 4 which
invite the injection of some scientific judgment. The
first is thatR exceeds 0 dB at low frequency, i.e., more
power is reflected than was incident. This unphysical
result is an artifact of the measurement method, ex-
plained in [11], and we do not want it to influence our
fit. Therefore, for points at whichR > 0 dB, we set
R = 0 dB in the fitting routine, and forsi we use the
greater of the amount by which the measuredR ex-
ceeded 1 andsi as determined by Eq. (9). The second
questionable feature of the data is the behavior around
400 MHz. If we include all those points, the fitting
routine attempts to produce a bump around 400 MHz,
which does not occur naturally in the model. The result
is a poor fit and unrealistic parameter values. In the
time-domain method used in the measurements, a spuri-
ous structure could have been produced through a con-
spiracy of inopportune distances, small signals, and the
FFT. (This pathology wasremedied in later measure-
ments.) We therefore did not include the four data points
at 380 MHz–440 MHz in our fits, though we will show
them in our comparisons of fits and data. If the structure
around 400 MHz proves to be real, our simple model is
incapable of reproducing it.

A final consideration in performing the fit is the
appropriate frequency range. The model can be
expected to fail for frequencies at which the wavelength
is comparable to or smaller than characteristic (electri-
cal) lengths of the absorber. In this case the relevant
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Fig. 4. Reflection coefficient data for small absorber.

length is twice the thickness of the slab. Due to the taper
of the cones, there is a longitudinal dependence of the
effective permittivity [3, 6] which is neglected in our
model; and when the wavelength in the material be-
comes comparable to 2d, these effects become impor-
tant. Although we do not knowd or «(f ) before the fit,
the dip position tells us the electrical distance in the
slab. In the model the first prominent dip is caused by
the destructive interference between the waves reflected
from the front surface and the back wall. Thus, at the dip
frequency the wavelength in the material is about 4d,
and we can expect the model to break down somewhere
in the neighborhood of the first prominent dip, which for
this absorber occurs at about 580 MHz.

For frequency ranges up to about 600 MHz or 700
MHz, the ODR routine has no trouble finding good fits
to the measured data of Fig. 4. Indeed, by using different
initial values of the parameters it is possible to find
many different sets of “optimized” parameters, corre-
sponding to different local minima of the optimization
function, Eq. (8). An important point is that we are not
necessarily seeking the absolute minimum of the func-
tion x2. We are more interested in a good fit with realis-
tic parameters than in a slightly better fit with unrealistic
values of the parameters. We have found that the most
effective way to focus on realistic parameter values is to
restrict our search to solutions with thicknessd between
0.05 m and 0.29 m, since these are the relevant thick-
nesses of the absorber (see Fig. 3). Good fits were found
for 0.05 m# d # 0.17 m, but fits ford < 0.08 m or
d > 0.15 m had unpalatably large values of«̂100 and/or

a« . We therefore narrow the range of good fits to 0.08
m < d < 0.15 m. For our preferred fit we choose a
thickness near the midpoint of the range. The parameter
values of the preferred fit ared = 0.12 m,«100 = 41.30,
a« = 2.427,s100 = 0.009 963 S/m, andas = 0.8008. The
curve resulting from using these values in Eqs. (3) and
(5) is compared to the data in Fig. 5. All the data are
plotted in the figure, not just those used in the fit. The
error bars correspond to one standard deviation of the
statistical error only,6sAi . Horizontal error bars are not
shown because they are all the same and quite small (65
MHz). It is obvious from the figure that the agreement
is excellent over the range of the fit (0 MHz to 580
MHz), and it remains moderately good up to about 700
MHz. To quantify the agreement we note thatx2

ODR is 2.5
with 20 degrees of freedom, which is embarrassingly
good. Even if we include the points near 400 MHz, use
si = sAi , and computex2

OLS, we obtain x2
OLS/n = 0.44

over the 20 MHz to 580 MHz range, which still repre-
sents very good agreement.

We thus have a very good representation of this ab-
sorber up to about 600 MHz. It would also be useful to
know the uncertainty in the determination of the effec-
tive parameters. As noted above, there are good fits with
acceptable values of the parameters for 0.08 m# d #
0.15 m. The solutions at the ends of this interval are
d = 0.08 m,«̂100 = 91.29,a« = 2.164,s100 = 0.012 11
S/m, as = 0.9409, andd = 0.15 m,«̂100 = 22.92,a« =
2.849,s100 = 0.014 29 S/m,as = 0.4439. The curves for
these two solutions are compared to the data in Fig. 6,
and both agree very well. Therefore, in using this model
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Fig. 5. Preferred fit to small-absorber data over 0 MHz–580 MHz frequency range.

Fig. 6. Other acceptable fits to small-absorber data.
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in a calculation, one would also evaluate the result using
(at least) thed = 0.08 m andd = 0.15 m solutions, in
order to gauge the sensitivity of the calculation to the
model parameters.

The exclusion of otherwise good fits because of unac-
ceptable values for one or more parameters warrants
comment. Solutions with unrealistic values of the
parameters are suspect on the grounds that the parame-
ters may be delicately balanced to produce a fit which
agrees with the input data, but produces highly improb-
able predictions in other places, e.g., at different fre-
quencies or in other measurable quantities. The present
model is intended to represent all (macroscopic) facets
of the electromagnetic behavior of the absorber, and so
we want to minimize the likelihood of nasty surprises.
Experience teaches us that avoiding unrealistic parame-
ter values is one way to do so. To illustrate the need for
the introduction of human intelligence into the fitting
process we present one of the discarded fits, Fig. 7. The
parameter values wered = 1.166 m, «̂100 = 18.07,
a«=2.930, s100 = .004411 S/m,as=0.3016. The fitted
value ford is about 4 times the physical thickness of the
absorber, but the fit is quite good (ignoring the suspect
380 MHz to 440 MHz points),x2

ODR/n = 0.75. However,
it is clear that the fit would not survive measurements at
additional low frequencies or around 400 MHz.

4. Application to Mid-Size Absorber

The second example is absorber 3 of [11]. It is a fire
retardant absorber, 0.91 m tall, with twisted pyramids,

Fig. 8. The test sample was a 3 m square. Additional
measurements were made on this absorber after publica-
tion of [11], and we now have three different measure-
ments at each frequency. We also present more
frequency points than previously published. As in the
first example, the three measurements are used to com-
pute an average and standard deviation. In this case there
are no obvious anomalies requiring special treatment.
Fits were performed using both the fullsi of Eq. (9) and
using just the statistical standard deviationsAi computed
from the three measurements. We will present the fits
obtained using just thesAi . Drawing on the experience
of the last example, we chose the frequency range to
extend to 300 MHz, just beyond the first prominent dip.

The absorber dimensions suggest that the effective
thicknessd should be between 0.15 m and 0.91 m. We
scanned this entire region and were able to find good fits
for 0.37 m# d # 0.55 m. Fits withd less than about
0.40 m have a very deep, sharp dip between 20 MHz and
40 MHz, and consequently we discarded them. Figure 9
compares the fitted curve to the data for the best fit,
d = 0.4368 m,«̂100 = 69.08,a« = 2.049,s100 = 0.018 61
S/m, as = –0.4267. The agreement is very good, as is
reflected by the fact thatx2

ODR/n = 0.27, using justsA. If
we wish to avoid negative values ofas , we can fix
as = 0. Then the best fit is ford = 0.4568 m,«̂100= 63.31,
a« = 2.062,s100= 0.01267 S/m, for whichx2

ODR/n = 0.89.

Fig. 7. A contrived fit to small-absorber data using unrealistic parameter values.
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Fig. 8. Mid-size absorber used in second application.

There are also data for the angular dependence of the
reflection coefficient for this absorber [12]. (Again,
what is measured is an approximation to the true reflec-
tion coefficient.) Because the time windowing was dif-
ferent for the bistatic angular measurements (front sur-
face reflection as opposed to full reflection), we did not
include these data in the fit. We can compare calculated
results to angular data using the fitted values for the

effective parameters, but there is a minor difficulty in
doing so. Theu = 0 bistatic data do not agree exactly
with the monostatic data. Since the model was con-
strained to agree with the monostatic data, its overall
normalization will not be correct for the bistatic (angu-
lar) data. This is seen in Figs. 10a and 10b, where the
dashed curves are the model calculations using the
parameters noted above (d = 0.4368 m, etc.). The verti-
cal error bars on the data correspond to62 dB [12],
whereas the horizontal error bars reflect the size of the
angular bins. For purposes of comparing the shape of
the angular calculations to the data, we have also plotted
a solid curve which is the model calculation normalized
to agree with the angular data atu = 0, as it would if
bistatic and monostatic measurements agreed exactly.
The agreement for the two representative frequencies
shown is quite satisfying and offers additional evidence
for the basic validity of the model.

5. Summary and Conclusions

We have presented a simple model for the low-
frequency behavior of absorbing materials backed by a
conducting wall. The model does not enable one to
calculate absorber properties from geometrical and ma-
terial properties, and therefore it is not an absorber
design tool. It is intended instead as a way to incorporate
measured properties of absorbers in calculations of the
performance of chambers lined entirely or partially with
those absorbers. (It could also provide a simple parame-
terization of calculated properties.) The model was

Fig. 9. Preferred fit, over 0 MHz–300 MHz range, to data for mid-size absorber.
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Fig. 10a. Predicted curves for angular dependence of reflection coefficient at 160 MHz. Solid
curve has been normalized to take into account the discrepancy between monostatic and bistatic
data.

Fig. 10b. Predicted curves for angular dependence of reflection coefficient at 240 MHz. Solid
curve has been normalized to take into account the discrepancy between monostatic and bistatic
data.
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applied to two absorbers of different sizes and shapes
and was able to replicate the behavior of their reflection
coefficients up to a frequency slightly above the first
prominent minimum in each case. The two examples
considered were polyurethane foam, but the model
should also be applicable to ferrite or composite ab-
sorbers. There are two principal advantages of the
model. One is its simplicity, which should permit its use
as the basis of relatively realistic and detailed calcula-
tions of field structure within absorber-lined chambers.
The other advantage is that (by construction) it accu-
rately reproduces the measured reflection properties of
walls of absorbing material. Of course, this is an advan-
tage only if one has good measurements of the reflection
properties.

There are several obvious possibilities for further
work. One direction is additional model development
and validation. Topics which could be addressed com-
prise additional fits to traditional pyramidal absorbers,
use of phase information to determine the appropriate
position of the model absorber relative to the real
absorber, inclusion of bistatic data in the fits, expansion
of the frequency range of the fits (e.g., by lettingd vary
with frequency) and application to ferrites. An interest-
ing and economical way to address some of these
questions would be to fit the model to data generated by
a more sophisticated and predictive model, such as
[6–10]. The other obvious direction for future work is to
use this model for its intended purpose—characteri-
zation of anechoic chambers, semi-anechoic chambers,
and partially loaded screened rooms. Now that we have
a relatively simple planar model for a wall of absorber,
the electromagnetic problem of calculating a modal
expansion for the field distribution in the chamber for a
given source distribution should be considerably less
daunting.
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